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The sufficient conditions for stability are obtained for the null solution of a system of integro- 
differential equations under rather general assumptions on the kernels of the integral operators and the 
form of the stochastic coefficients. Similar conditions of stability are also found for the case of an 
exponential kernel and stochastic coefficients in the form of Gaussian white noise in order to find a 
broader stability domain in the system parameter space. The root-mean-square stability of the null 

solution of the equation of motion of a viscoelastic rod has already been analysed in earlier 
publications; here the stability of a viscoelastic system is considered in probabilistic terms. 

CONSIDERABLE difficulties arise in solving the problem of the stability of systems of integro- 
differential equations with random parameters, including, in particular, those that describe the 
behaviour of viscoelastic systems under the action of random loads. If the viscosity of the 
construction material is low, and the root-mean-square random load fluctuations are also 
small, these difficulties can be overcome using the asymptotic method [l, 21. For an integral 
operator kernel that can be represented in the form of the sum of exponential functions, and 
loads that are Gaussian white noise, necessary and sufficient conditions were found in [3,4] for 
stability with respect to statistical moments. Using the same assumptions about the load and 
kernel, sufficient conditions for almost sure stability were found in [5] which are identical with 
the root-mean-square stability conditions [3, 41 when there is no external damping. Sufficient 
conditions have been found [6] for the root-mean-square stability for the general case of a 
material creep kernel and a longitudinal force in the form of a delta-correlated stationary 
process. 

1. THE GENERAL CASE 

Below the solution of a system of equations will be called almost surely stable [7-91 (strongly 
probabilistically stable [lo]) for t > 0 if 

P lim sugllx(r,xo)ll=O = 1 
Ur~U+O 1) 

This condition can be represented in a somewhat different equivalent form 

p# 
I 

“sJM~gllx(f,x,)lI> E = 0 
I 
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where E is an arbitrary small positive number. 
By II x(t) II, II x, II we mean the norm of the solution at times t and t = 0. 
The solution x(t) is almost surely asymptotically stable if the preceding condition is satisfied, 

and furthermore, if there is a 6 > 0 such that for II x, II< 6 and any small E > 0 

lim P supllx(r,x,)ll>& =o 
q-w- 1’4 

Consider the system of linear integrodifferential equations 

x = A,x + G,rx + D,x 0.1) 

rXj =j~(r-.r)Xj(~)dz 

0 

where x = {xi} is the vector of unknown quantities, j = 1, 2, . . . , 4, A,, G, and D, are square 
(4 x TIJ matrices, and the kernel T(t - T) is a strictly monotonically decreasing function which 
satisfies the condition 

0 s jf(f3)do c 1, 0 d F(e) when 8 B 0 
0 

By expanding the phase space one can write Eq. (1.1) in the form of a system of equations 
for the first derivatives 

i=Az+Gl-z (1.2) 

The vector z contains n = 24 components, and A and G are square (n x n) matrices. 
Below we shall assume that the matrix A can be written as a sum A= D+ F(r) where the 

matrices D and G are constant (the matrix D is stable), while F(r) is a matrix whose elements 
are stochastic stationary ergodic processes. 

The matrix F(t) can be represented as follows: 

F(t) = %fM’~. 2 
rnS n1 

k=l 

where F(t) are constant matrices and fk(f) are random stationary functions that are assumed to 
be bounded, integrable and ergodic. 

We will introduce the positive-definite quadratic form V = z* Pz. Here and below an asterisk 
denotes transposition. 

Using the notation y = P1”z, the quadratic form V can be expressed as the square of the 
norm of the vector y 

v = y*y = llyll2 

The matrix PI’* is given by the expression 

PK = WLxW*, Lx = dia&,...,k~] 

where W is the matrix of orthonormal eigenvectors of the symmetric matrix P, and L is the 
diagonal matrix of eigenvalues of that matrix. 

The derivative of the quadratic form along the trajectory of the solution of Eq. (1.2) is 

ri= y*(D* +D)y+ &k(r)y’(G; +Gk)y+ 
k=l 

(1.3) 

+ y*WW + O’Y)*H’Y 
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For quadratic forms we have the well-known inequalities [ll J 

y*(B’ + WY C JI]~Y~* r’(c; +C,)Y 6 Pdyi’ 

Here q and p, are the largest eigenvalues of the matrices B* + B and C, +C, (pL* being the 
largest in absolute value). 

Using the ~uchy-B~yako~kii-Schwa~z in~uality [12], we have 

y*W’y 1 G npaY Wllj f (r - ~>liYO>[~ 
0 

p = max,,jlhiil 

As a result, from (1.3) we obtain 

We use the substitution 

[y(t)]] = P’*r(t), r(t) a 0 

after which inequality (1.4) takes the form 

i(r) c - 1 k$.iklr, (t)fr(t) + np j f-0 - Qe-q(r-5)‘2rtW’c 
II 0 

or 

We will now assume that the kernel i‘(O) is such that the function 

Q(r) = j ~(8)e-qe/2~0 Z 0 
0 

is integrable and 

iim !. j*(T)& = c c = const 
‘+=fO 

Integrating both sides of inequality (l.S), we find that 

r(t) e U(l) c lYcq+ 

(1.4) 

(1.5) 

(1.6) 
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Using the Gronwall-Bellman lemma [12] we have 

or 

It is obvious here that as t + QO the norm II y II tends to zero if the expression in square 
brackets is a negative quantity. 

From the ergodicity condition on the stationary functions f,(t) it follows that 

Here the angular brackets denote averaging over the statistical ensemble. 
As a result the null solution of the system of integrodifferential equations (1.1) is almost 

surely asymptotically stable if the condition 

(1.7) 

is satisfied. 
Thus the ergodicity requirements on the stochastic coefficients of the equations enables one 

to formulate stability conditions for a broad class of stationary processes that can be used to 
describe parametric excitation of real viscoelastic systems. 

ExumpZe. In the investigation of the stability of a compressed viscoelastic rod, hinged at both ends, the 
equation for the amplitude of a sinusoidal deflection (with initial perturbations also specified in the form 
of a sinusoid) has the form 

f+2ti+(l-a)x-f(t)x-l-x=0 (1.8) 

where Z& is a coefficient characterizing the effect of external damping, a is a dimensionless parameter for 

the constant external compressive force (a < l), and f(t) is a random stationary 
the variable component of the longitudiial force with a mathematical expectation 

The matrices D, G and F have the form 

We will take a kernel f(t-r) of the form 

f(t-7)= IERexp[-K(t-r)] (OSR<l) 

(K and R being constants). 
In thii case 

process proportional to 

of zero. 

IfKissuchthat ~+q/2>0,then 
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limf(t)=c=KR(K+~/2)-~ 
I-c 

Then inequality (1.7) can be written as follows: 

If k*q/2, onecanput 

From this we find 

(1.9) 

We take as the matrix P 

which was obtained in [9] for Eq. (1.8) (when I’x=O) from the condition for determining the largest 
domain of stability in the parameter space of the equation. 

The eigenvalues and corresponding eigenvectors for this matrix are 

A, =l-a/2+&‘+&, X, =1-a/2+s2 -k 

w, =(l+r2)-% l II --r 
w, =(I+?)-$ r 

II 1 

k=[e4 +(l-a)s2 +a2/4]“2, r=-a/(2&)+&-k/c: 

Fv l-3 show graphs of the parameters 7j, ti and p as a function of a for different values of E. Using 
these graphs with specified values of R and E it is easy to estimate the quantity (If I). We note that for 
small values of E the quantity R is allowed to be small. 
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F~i.3. 

2 A SPECIAL CASE 

The stability condition in the form (1.7) was obtained under rather broad assumptions about 
the form of the kernel of the integral operator IX and stochastic processes f&(t), Because of 
this the estimates of characteristic parameters of the system ensuring almost sure stability of 
the solution of Eqs (1.1) are very restrlctive, which in particular explains the rather rough 
estimates of the integra! terms in inequality (1.4), and also the restriction on the nature of the 
variation of the kernel IQ -z) represented in the form (1.6). These restrictions can be weaken- 
ed if we consider special cases of the kernel r(t - 2) and functions f&(r). 

In the theory of vi~~lasti~i~ it is often assumed that the kernel of the relaxation and 
material creep operators can be represented in the form of a sum of exponential functions 

~(f-2)= ~KjRjeXp(-lcj(t-~)I 

j=l 

(tri and Rj are constants). 
Below we consider a kernel of this type. 
Using the substitution 

Uj = ;XjRj eXP[-Kj(f -‘E)]Z(Z)d7 
0 

the system of integrodifferential equations (1.2) changes to a system of differential equations 

i=Az+G~Uj 
j=I 

. 
Ui=KjRjZ-lCjUj (]=1,2,...,1) 

Equation (2.1) eau again be written in the form 

s= 

A G G . . . G 

El -NI 0 .., 0 

E, 0 -N, ..v 0 

. . * 

E, 0 0 . . . -N, 

, M,= 

Fk 0 . . . 0 

0 0 . . . 0 

. . . 

. . . 

f . 

0 0 . . . 0 

w 
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Ei = KjRiE, Nj = KjE 

(where E is the identity matrix). 
Then from the matrix S one can construct a positive-definite quadratic form [13], and using 

it, almost literally repeating the argument of the previous section, obtain a stability condition in 
the form of an inequality similar to (1.7) 

3. GAUSSIAN WHITE NOISE 

If the stationa~ processes are Gaussian white noise, the above approach cannot be directly 
applied. In this case one has to use the theory of Markov processes [lo]. Features of the 
solution of the problem using this approach will be considered using, as an example, the 
tXpW.iOll 

i+ (I- a)x-iKRe-K['-7)X(7)rkt+ 2ti-PQr)x=O 
0 

where c(t) is Gaussian white noise, E 3 0, K 2 0, 0 d R c 1. 
We will write Fq. (3.1) in the form of a system of first-order ~fferential equations 

(3.1) 

i=Bx+&x 

EC 

t 

0 10 

rKRe-‘C(‘-T)xl (z)dz 
I 

t 

We write out the positive-definite quadratic form 

(the fzr are constants). 
Its positive definiteness is ensured by the inequalities 

We know [lo] that 
sense if the ~nditio~ 

~3.2) 

all>O, a,>O, ff,l+azz+a,,az,-a~,-a,23-a~~~0, 

ah + d3all + a2243 - 2w23w - alla22 > 0 

tb null solution of system (3.2) is probabilisticallly stabfe in the strong 

Lv av 3 3 av p2 2 a2v 
‘z+ )= xb@Xj-C- 

i=l jsl ax&. 2x’?ggo (3.3) 

is satisfied. 
After making all the substitutions we obtain 
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j/, LV = [-(I - a)q2 + KRu,, + j-5 P2a22 I$ + 
+[a,, -2q2 -(1-a)u,, +~a~~Rlx~x~ f 

+[-(l-a)~j+f~~~ +KR-KK~~~].v$~ + 

+(a,, - 2ea& +(a,~-2&u*3-W2~+ 

+a~2)X2X3+(~23-K)X32 s 0 

We require the coefficient in front of xf to be negative, and all the others to be zero. Then 

all =U(l-a+4&2)A-K2R, at2=‘hA 

a22 = aA, u23 = K, aI3 = u[(~E + K)* - A] 

p2 < 2[2e(l- a) + KR - ~R(21z-b K)? /A] 

(U=K/(2E+K), d=l-R-~+K(~E+K)) 

Condition (3.3) reduces to the following inequalities 

A>O, (1-a+4&2)A-K(2&+K)R>0 

A(2-a+4e2 - r2R) - aaA2 - 

--K(~E+K)[~+R-~A+(~E+K)~]>O 

(l-a-R){[2e(l-a)+KR]A-K(2&f~)~R)rO 

(3.4) 

(3.5) 

Thus the null solution of Eq. (3.1) is almost surely stable if conditions (3.4) and (3.5) are 
satis~ed. 

It can be shown that for s~ciently small K and 1 -a-R > 0 (the stability condition for the 
quasi-static formulation of the problem with p = 0) inequality (3.5) is satisfied. Consequently, 
in this case the condition for stability is the satisfaction of inequality (3.4). 

If K = R = 0, then from (3.4) we have 

p2 < 48(1- a) (3.6) 

If r-0 then 

We note that these estimates for B” are identical with similar estimates obtained from the 
root-mean-square condition for the solution to be stabie. 

Thus in this case the range of variation of B” is identical with that for the root-mean-square 
condition of stability of the solution x = 0. 
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